
Genética Molecular
El redescubrimiento de los trabajos de Gregor Mendel en el año 1900 y la amplia generalización de sus conclusiones a la que condujeron los trabajos de genetistas como Morgan, Sturtevant y Muller en las primeras décadas del S. XX, trajeron como consecuencia la aceptación prácticamente universal de los principios mendelianos de la herencia biológica.
Esta aceptación propició grandes avances en el conocimiento de los procesos genéticos que afectan tanto a las células individuales como a los organismos pluricelulares y a las poblaciones de seres vivos. El gran bagaje de conocimientos acumulados, que globalmente configuran lo que se ha dado en llamar genética clásica, no sólo ha elevado nuestro nivel de comprensión de los sistemas vivos hasta cotas insospechadas pocos años antes, sino que su aplicación en campos como la agricultura y la medicina ha resultado enormemente beneficiosa para la humanidad. Sin embargo, durante todo este período, que abarca la primera mitad del S. XX, el concepto fundamental de la genética, el gen, permanecía desprovisto de todo contenido material.
Aunque la teoría cromosómica de la herencia había establecido con claridad la localización de los genes en el núcleo celular y, más concretamente, en los cromosomas, los genetistas clásicos desconocían por completo la naturaleza físico-química del gen, así como los mecanismos por los que éste, desde su sede en el núcleo celular, era capaz de dirigir la maquinaria bioquímica de la célula y de replicarse con exactitud a lo largo de muchas generaciones celulares. El gen mendeliano era una entidad indivisible y abstracta cuya existencia era reconocida por sus efectos sobre células y organismos aunque su naturaleza material continuase siendo un misterio. A la pregunta "¿qué es un gen?" un genetista clásico probablemente respondiese que el gen es "algo" capaz de controlar un carácter hereditario, de replicarse a sí mismo fielmente en las sucesivas generaciones celulares, de recombinar con otros genes en el proceso de división celular meiótica y de cambiar globalmente su estructura para producir una alternativa diferente del carácter que controla en el proceso conocido como mutación. Conocer la naturaleza física del gen y los mecanismos moleculares mediante los cuales éste se replica y controla un carácter hereditario, aunque de indudable interés intelectual para el genetista clásico, no es el objetivo de su trabajo, puesto que las teorías y predicciones experimentales que formula acerca de los mecanismos de la herencia, y el éxito de las mismas, no dependen de estos conocimientos.
En los años 40, el panorama hasta aquí dibujado cambió radicalmente cuando un nutrido grupo de científicos, cuya formación y motivaciones eran muy diferentes de las de los genetistas clásicos, comenzó a interesarse por la naturaleza del gen. Se trataba de investigadores que se habían formado en el campo de las ciencias físicas y que estaban escasamente familiarizados con los conocimientos acumulados en las décadas precedentes por los genetistas clásicos e, incluso, con la Biología en general. Por razones que desarrollaremos a continuación, este grupo de científicos centró su interés en la resolución de un único problema: la base física de la información genética.
Los antecedentes de este movimiento intelectual hay que buscarlos en la exposición, por parte de Niels Bohr, uno de los más ilustres físicos del S. XX, de la idea de que algunos de los fenómenos biológicos podrían no ser completamente explicables en función de conceptos físicos y químicos convencionales. En opinión de Bohr, y de algunos de sus discípulos, la herencia biológica era claramente uno de estos fenómenos.
Las ideas de Bohr, que en algún momento fueron mal interpretadas y tergiversadas con la intención de resucitar la vieja doctrina filosófica del vitalismo, no llegaron a calar hondo entre la comunidad científica hasta que en 1945 (inmediatamente después del final de la segunda guerra mundial), Erwin Schrödinger , uno de los padres de la mecánica cuántica, publicó un pequeño ensayo titulado "¿Qué es la vida?", en el que dichas ideas eran recogidas y desarrolladas de manera mucho más rigurosa. Para Schrödinger, el único problema real, aquel en el que las explicaciones físicas convencionales podrían resultar insuficientes, era la naturaleza física del gen.
Las estimaciones de los tamaños de los genes que se deducían de los análisis realizados por los genetistas clásicos en la mosca del vinagre (Drosophila melanogáster) indicaban que éstos eran similares a los de las mayores moléculas conocidas. Si, como apuntaban estas estimaciones, el gen no era más que un tipo particular de molécula, se trataba, en opinión de Schrödinger, de una molécula muy especial. En primer lugar, el gen demostraba ser una molécula altamente estable, capaz de conservar su estructura específica, y por lo tanto su contenido informativo, durante largos períodos de tiempo y en un ambiente químicamente heterogéneo como es el ambiente celular. En segundo lugar, lo que resultaba todavía más desconcertante, la "molécula génica" era capaz de dar lugar a copias fieles de sí misma y transmitirlas sin alteración a lo largo de innumerables generaciones celulares. No existía ninguna molécula conocida que reuniera estas características.
Schrödinger sugería en su ensayo que la molécula génica podría ser un gran cristal aperiódico consistente en la sucesión de unos cuantos elementos isómeros y que la naturaleza exacta de esta sucesión constituiría el código genético. Apuntaba, además, que, por el hecho de que las propiedades exhibidas por la molécula génica no resultaran explicables desde el punto de vista de las leyes físicas conocidas hasta la fecha, no había que presuponer que dicha molécula eludiese dichas leyes. Por el contrario, estas propiedades podrían implicar la existencia de "otras leyes físicas", desconocidas por el momento, que, una vez descubiertas, formarían parte integral de esta ciencia junto con las ya conocidas.
La propuesta de Schrödinger tuvo efectos inmediatos. Los físicos de la época se encontraban sumidos en un gran malestar profesional, probablemente relacionado con el uso bélico que se había hecho de sus investigaciones al final de la segunda guerra mundial, y estaban deseosos de dirigir sus esfuerzos hacia nuevas fronteras del conocimiento. En este contexto, un físico del prestigio de Erwin Schrödinger expone la idea de que el estudio de la materia viva, y más concretamente del gen, podría revelar la existencia de "otras leyes físicas" que aguardaban ahí a que alguien las descubriese. Animados por esta posibilidad, un buen número de físicos decidió abandonar el campo de la investigación para el que habían sido formados y "desembarcaron" en las ciencias biológicas con el objetivo de esclarecer la base físico-química de la información genética.


![]() |
---|
INTRODUCCIÓN: EL CONCEPTO CLÁSICO DE GEN Y EL NACIMIENTO DE LA GENÉTICA MOLECULAR.
Técnicas utilizadas en Genética Molecular
Amplificación
Reacción en cadena de la polimerasa
Nucleótidos del ADN
Clonación
Plásmido
Enzima
Separación
Expresión
Detección
Secuencias
Libros en linea